MI DEQ & RETAP Pollution Prevention (P2) Training

In Living Color: Painting Pollution Prevention

Cam Metcalf, Executive Director
Richard Meisenhelder, P2 Specialist
Lori Hoetker, Technical Coordinator
Kentucky Pollution Prevention Center (KPPC)

An Alternative Approach to a P2 Program

CHART OF ABC's PAINTING PROCESS

Waste Reduction **Operation Phase** Recognized Need Start ONE ONE Assessment & Trng. PHASE **Good Housekeeping** Waste Separation 0-6 months, Big Return on Simple Recycling Investment

Practical Considerations

Painting is: A "Necessary Evil" A "Step-Child" Operation ☐ A Messy One at That!! ☐ It's usually one of the Largest Sources of waste in the plant! ■ Managers have been sold on "Sacred Cows" Don't change the way painters do things! Waste is an inevitable part of product cost! If it ain't broke, don't fix it!!!

Management "HOOKS": True Cost of Paint Wastes

- **VOC Emissions**
 - ☐ Purchase price of all that solvent!
 - ☐ Are we close to permit limits?
 - ☐ Could we get increased limits if we tried?
 - Would we have to refuse new business not to exceed our limits?
- **□** Special Wastes
 - ☐ Booth Scrapings, Filters & booth liners
 - Watercurtain skimmings

Management "HOOKS": True Cost of Paint Wastes

- **■** Wastewater
 - ☐ Is "Goop" from curtainwater causing major probems?
 - ☐ Are we paying extra for BOD, COD or Metals?
- ☐ Cost Accounting: Few companies really know the cost of their paint waste!
- ☐ Show them needless waste factored into "Standard Product Cost" & "Hidden Costs" in Overhead!

Coating Application Process Wastes

- ☐ Leftover paints
- Cleaning solvents/thinners
- ☐ Air emissions (VOCs & HAPs)
- ☐ Spray booth filters
- **□**Soiled rags
- **■** Expired shelf-life inventory

P2 in Coating Application Processes

- ☐ Inventory control
- **☐** Good housekeeping practices
- ☐ Proper paint mixing
- Increased operator training
- ☐ High transfer efficiency equipment
- ☐ Proper cleaning methods/Reduce toxicity
- **☐** Alternative coatings
- **☐** Reuseable paint booth filters
- **☐** Recycling/reuse of solvents
- Using materials exchanges

Waste Reduction Equipment Phase Process Controls Equipment Modifications Source Treatment 6 months - 2 years **Some Return on Investment**

P2 for Spray Painting

- **□** Gravity-Feed Guns
- ☐ High-Volume, Low-Pressure Guns
- **Electrostatic Guns**
- **UNICARB**TM Spray System
- **□**Rotary Atomization
- **Powder Coatings**
- **□**Electrocoat
- **□**Roller coating

Sample Diagram for Painting Operations

Spray Painting Survey

☐ Air-atomize guns	64%
☐ Airless guns	22%
☐ Air-assisted airless guns	17%
□ HVLP guns	37%
☐ Electrostatic equipment	42%
☐ Plural-component	11%
☐ Liquefied CO2 application	2.5%
Products Finishing Survey (240/7	11)

Waste Reduction **Process Phase**

2 years - 5 years

Source: Battelle

Figure 4. Powder Coating Recovery System.

Subprocess Flow Diagram Electrostatic Spray Powder Application

When Management Re-Thinks Painting: Gov. Award Winner

- □ Rebuilt paint room to handle color changes
- □ Replaced solvent pre-cleaning with aqueous
- Revised spray system for low-VOC paints
- **■** Installed thinner recovery system
- **Found a way to reuse solvent still bottoms**
- ☐ Changed paint booth filters to reuseable EPS & then dissolve them in thinners

- ☐ Company Generates 550 Gallons of Waste Paint/Month
- □ 403 of 550 Gallons are Distillation Bottoms

- **☐** Distillation Bottom Composition
 - ☐ Pigments (5-30%)
 - ☐ Resins (5-30%)
 - **☐ Solvents (50-80%)**
 - Metallic Dryers
 - Antiskining Agents
 - ☐ Antisettling Agents
- ☐ 20 Samples: Average % by Weight:
 - **✓** Solvents 50.76%
 - **✓** Organics 30.79%
 - ✓ Inorganics 18.45%

- **Explore Opportunities**
 - Automotive Undercoat
 - ☐ Asphalt/Concrete Sealer or Filler
 - **Wood Fences & Barn Paint**
 - **✓ Most of Necessary Ingredients Present**
 - ✓ Developed Economic Projections for this Opportunity

- **Economic Benefits**
 - **\$30,000 Profit from Product Sale**
 - **√\$40,000 Revenue Minus \$10,000 Cost of Production**
 - ☐ Plus \$10,000 Avoided Disposal Costs
 - ☐ Equals \$40,000 Annual Savings

1991 Sludge Disposal Cost 25 cents per gallon

DATE	OUANTITY
2/20	5,700 gallons
4/8	3,500 gallons
8/6	4,500 gallons
8/6	4,000 gallons
10/10	3,500 gallons
12/2	4,200 gallons

1991 Hazardous Waste Disposal Fees = \$32,000/yr..

Spray gun cleaner-Xylene 100 gallons/quarter

High solids paint 300+ gallons/quarter

Waste oil (vanishing oil) 800+ gallons/quarter

Petroleum solvent asphalt blend 300+ gallons/one time only

Solid Waste Analysis

	SIZE YDs ³	WEIGHT LBs	HAUL FEE YD	HAUL FEE TON	TIPPING FEE '91/'92
LUMBER	40	5,000	\$2.00	\$32.00	\$72.00/ 120.00
TRASH	42	10,000	\$1.90	\$16.00	\$37.80/ 63.00
PAINT SLUDGE	20	14,000	\$4.00	\$11.40	\$12.86/ 21.43

Solid Waste Estimates '91 - '92

HAUL FEE + TIPPING FEE = COST PER TON

Waste	Haul	Tip	Cost/Ton	
Lumber	\$32.00	\$72.00 {120}	\$104.00 {152}	('91) {'92}
Trash	\$16.00	\$37.80 {63}	\$53.80 {79}	('91) {'92}
Paint Sludge	\$11.40	\$12.86 {21.43}	\$24.26 {32.83}	('91) {'92}

'91 Cost/Ton('92) x Tons='91 Disposal Cost

Projected '92 Disposal Cost

'91 Cost/Ton	Tons '91	Disposal Cost '92	Disposal Cost
	746.25	\$ 77,610	\$114,430
\$ 53.80(79)x	1,763	\$ 94,823	\$139,277
Faint Sludge \$ 24.26(32.82)x	94.5 TOTAL:	\$ 2,293 \$174.726	\$ 3,102 \$255,809

Waste Calculations

```
Dept. 05, 19, 36
```

- ☐ Average Loads Per Day
 21 x .5 cu. yd. = 10.5 cu. yd./day
- ☐ Average 29.4 pickups in 21 days
 - = 1.4 pulls/day
- 1.4 pulls/day x 42 cu. yd. Container
- 10.5 cu. yd./day
- 58.8 cu. yd./day
- =17.85% cardboard
- ☐ Assume 15% Cardboard

2100 lbs./day

over 1 ton/day

MI DEQ & RETAP Pollution Prevention (P2) Training

The Next Steps: P2 in Painting Operations

Cam Metcalf, Executive Director
Richard Meisenhelder, P2 Specialist
Lori Hoetker, Technical Coordinator
Kentucky Pollution Prevention Center (KPPC)

